Electrical and Mechanical Characterisation of Poly(ethylene)oxide-Polysulfone Blend for Composite Structural Lithium Batteries

Author:

Gucci Francesco1ORCID,Grasso Marzio1ORCID,Russo Stefano1ORCID,Leighton Glenn J. T.1ORCID,Shaw Christopher1ORCID,Brighton James1

Affiliation:

1. School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK

Abstract

In this work, a blend of PEO, polysulfone (PSF), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSi) was prepared at different PEO–PSf weight ratios (70-30, 80-20, and 90-10) and ethylene oxide to lithium (EO/Li) ratios (16/1, 20/1, 30/1, and 50/1). The samples were characterised using FT-IR, DSC, and XRD. Young’s modulus and tensile strength were evaluated at room temperature with micro-tensile testing. The ionic conductivity was measured between 5 °C and 45 °C through electrochemical impedance spectroscopy (EIS). The samples with a ratio of PEO and PSf equal to 70-30 and EO/Li ratio equal to 16/1 have the highest conductivity (1.91 × 10−4 S/cm) at 25 °C, while the PEO–PSf 80-20 EO/Li = 50/1 have the highest averaged Young’s modulus of about 1.5 GPa at 25 °C. The configuration with a good balance between electrical and mechanical properties is the PEO–PSf 70-30 EO/Li = 30/1, which has a conductivity of 1.17 × 10−4 S/cm and a Young’s modulus of 800 MPa, both measured at 25 °C. It was also found that increasing the EO/Li ratio to 16/1 dramatically affects the mechanical properties of the samples with them showing extreme embrittlement.

Funder

ESPRC

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3