Ballistic Performance, Thermal and Chemical Characterization of Ubim Fiber (Geonoma baculifera) Reinforced Epoxy Matrix Composites

Author:

Marchi Belayne Zanini1ORCID,Silveira Pedro Henrique Poubel Mendonça da1ORCID,Bezerra Wendell Bruno Almeida1ORCID,Nascimento Lucio Fabio Cassiano1,Lopes Felipe Perissé Duarte2,Candido Verônica Scarpini3ORCID,Silva Alisson Clay Rios da3,Monteiro Sergio Neves1ORCID

Affiliation:

1. Military Institute of Engineering, IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil

2. Laboratory for Advanced Materials—LAMAV, State University of North Fluminense, UENF, Campos dos Goytacazes 28013-602, RJ, Brazil

3. Materials Science and Engineering, Federal University of Para, UFPA, Highway BR-316, km 7.5–9.0, Ananindeua 67000-000, Brazil

Abstract

The search for unexplored natural materials as an alternative to synthetic components has driven the development of novel polymeric composites reinforced with environmentally-friendly materials. Natural lignocellulosic fibers (NLFs) have been highlighted as potential reinforcement in composite materials for engineering applications. In this work, a less known Amazonian fiber, the ubim fiber (Geonoma baculifera), is investigated as a possible reinforcement in epoxy composites and was, for the first time, thermally characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Additionally, its chemical structure was elucidated by Fourier transform infrared spectroscopy (FTIR). Ballistic tests were also performed against the threat of a 7.62 mm high-speed lead projectile. The results were statistically analyzed by the Weibull statistical analysis method. FTIR analysis showed the functional groups normally found for NLFs highly rich in cellulose, hemicellulose, and lignin. The TGA/DTG results showed the onset of thermal degradation for the composites (325~335 °C), which represents better thermal stability than isolated ubim fiber (259 °C), but slightly lower than that of pure epoxy (352 °C). The DSC results of the composites indicate endothermic peaks between 54 and 56 °C, and for the ubim fibers, at 71 °C. Ballistic tests revealed higher energy absorption in composites with lower fiber content due to the more intense action of the brittle fracture mechanisms of the epoxy resin, which tended to dissipate more energy. These failure mechanisms revealed the presence of river marks, cracks, and broken fibers with a detachment interface. These results may contribute to the production of ubim fiber-reinforced composites in engineering applications, such as ballistic armors.

Funder

Conselho Nacional de Desenvolvimento, CNPq

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3