Optimization of Gas-Sensing Properties in Poly(triarylamine) Field-Effect Transistors by Device and Interface Engineering

Author:

Kim Youngnan1,Lee Donggeun1,Nguyen Ky Van1ORCID,Lee Jung Hun2,Lee Wi Hyoung1ORCID

Affiliation:

1. Department of Organic and Nano System Engineering, School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea

2. Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

Abstract

In this study, we investigated the gas-sensing mechanism in bottom-gate organic field-effect transistors (OFETs) using poly(triarylamine) (PTAA). A comparison of different device architectures revealed that the top-contact structure exhibited superior gas-sensing performance in terms of field-effect mobility and sensitivity. The thickness of the active layer played a critical role in enhancing these parameters in the top-contact structure. Moreover, the distance and pathway for charge carriers to reach the active channel were found to significantly influence the gas response. Additionally, the surface treatment of the SiO2 dielectric with hydrophobic self-assembled mono-layers led to further improvement in the performance of the OFETs and gas sensors by effectively passivating the silanol groups. Under optimal conditions, our PTAA-based gas sensors achieved an exceptionally high response (>200%/ppm) towards NO2. These findings highlight the importance of device and interface engineering for optimizing gas-sensing properties in amorphous polymer semiconductors, offering valuable insights for the design of advanced gas sensors.

Funder

the Brain Pool program

the Basic Science Research Program

the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3