Enhanced Mechanical Properties of PVA Hydrogel by Low-Temperature Segment Self-Assembly vs. Freeze–Thaw Cycles

Author:

Wu Fei12,Gao Jianfeng1,Xiang Yang34,Yang Jianming56

Affiliation:

1. Taiyuan Institute of Technology, Taiyuan 030008, China

2. State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China

3. Shanxi Province Key Laboratory of Functional Nanocomposites, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China

4. Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051, China

5. School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China

6. State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China

Abstract

The rapid and effective fabrication of polyvinyl alcohol (PVA) hydrogels with good mechanical properties is of great significance yet remains a huge challenge. The preparation of PVA hydrogels via the conventional cyclic freeze–thaw method is intricate and time-intensive. In this study, a pioneering approach involving the utilization of low-temperature continuous freezing is introduced to produce a novel PVA-ethylene glycol (EG) gel. Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM) confirm that with the assistance of EG, PVA molecular chains can self-assemble to generate an abundance of microcrystalline domains at low temperatures, thus improving the mechanical properties of PVA-EG gel. Remarkably, when the mass ratio of H2O/EG is 4:6, the gel’s maximum tensile strength can reach 2.5 MPa, which is much higher than that of PVA gels prepared via the freeze–thaw method. The preparation process of PVA-EG gel is simple, and its properties are excellent, which will promote the wide application of PVA tough gel in many fields.

Funder

the 19 Years Youth Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3