Affiliation:
1. Department of Industrial Chemistry, Graduate School of Engineering, Tokyo Polytechnic University, Atsugi 243-0297, Japan
Abstract
Highly efficient one-pot synthesis of hexakis(m-phenyleneimine) macrocycle Cm6 from acetalprotected AB-type monomer, m-aminobenzaldehyde diethylacetal, was successfully achieved based on imine dynamic covalent chemistry and precipitation-driven cyclization. The structure of Cm6 in the solid state was determined using CP/MAS NMR, X-ray single crystallographic analysis, and WAXD. Macrocycle Cm6 is composed of six phenylene and imine bonds facing the same direction, with nitrogen atoms arranged on the outside of the ring, and has a chair conformation, as predicted from DFT calculation. The macrocycle forms π-stacked columnar aggregates and hexagonally closest-packed structure. The cyclization process was investigated using MALDI-TOF MS and NMR. A mechanism of precipitation-driven cyclization based on imine dynamic covalent chemistry and π-stacked columnar aggregation is proposed. Both the nature of imine linkage and the shape anisotropy of the macrocycle played an important role in the single one-pot synthesis. The water-mediated mutual conversion between macrocycle Cm6 and linear oligomers driven by thermal stimulation was analyzed using MALDI-TOF MS and GPC methods. Macrocycle Cm6 with a dynamic covalent imine bond exhibited self-healing properties when stimulated using heat.
Funder
Ministry of Education, Culture, Sports, Science and Technology (Japan) Grant-in-Aid for Challenging Exploratory Research
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献