Influence of Diabase Filler on the Structure and Tribological Properties of Coatings Based on Ultrahigh Molecular Weight Polyethylene

Author:

Skakov Mazhyn12,Bayandinova Moldir2ORCID,Ocheredko Igor2ORCID,Tuyakbayev Baurzhan2ORCID,Nurizinova Makpal2,Gradoboev Alexander3

Affiliation:

1. National Nuclear Center of the Republic of Kazakhstan, Ministry of Energy of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan

2. National Scientific Laboratory of Collective Use, Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk 070000, Kazakhstan

3. Experimental Physics Department, Tomsk Polytechnic University, Tomsk 634050, Russia

Abstract

This article presents the results of a study of a composite coating made of ultrahigh molecular weight polyethylene (UHMWPE) with a diabase filler obtained by flame spraying. Diabase of 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.% was chosen as a filler. The polymer coating was applied to the St3 metal substrate using temperature control in a conventional flame spraying process. The coating was studied using scanning electron microscopy, X-ray phase analysis, infrared spectroscopy, abrasive wear resistance, microhardness testing and determination of the friction coefficient. It has been shown that diabases do not have a negative effect on the initial chemical structure of UHMWPE and it is not subjected to destruction during flame spraying. The introduction of diabase into the composition of UHMWPE with a content of 10–40% of the total mass does not adversely affect the crystalline structure of the coating. It has been established that with an increase in the volume of the diabase filler, the wear resistance of the composite coating based on UHMWPE increases. It has been determined that with the addition of diabase, the microhardness of the coatings increases.

Funder

the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3