Affiliation:
1. Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
2. College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
3. State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
4. School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Abstract
Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
General Natural Science Foundation of Fujian Province
Subject
Polymers and Plastics,General Chemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献