Affiliation:
1. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China
2. Beijing Urban Construction Design and Development Group Co., Ltd., Beijing 100037, China
Abstract
In this study, sustainable engineered cementitious composites (ECC) exhibiting high tensile strength as well as high tensile strain capacity were successfully developed by incorporating polyethylene (PE) fiber, local recycled fine aggregate (RFA), and limestone calcined clay cement (LC3). The improvement in tensile strength and tensile ductility was attributed to the self-cementing properties of RFA as well as the pozzolanic reaction between calcined clay and cement. Carbonate aluminates were also generated owing to the reaction between calcium carbonate in limestone and the aluminates in both calcined clay and cement. The bond strength between fiber and matrix was also enhanced. At the age of 150 days, the tensile stress-strain curves of ECC containing LC3 and RFA shifted from a bilinear model to a trilinear model, and the hydrophobic PE fiber exhibited hydrophilic bonding performance when embedded in RFA-LC3-ECC matrix, which could be explained by the densified cementitious matrix as well as the refined pore structure of ECC. Moreover, the substitution of ordinary Portland cement (OPC) by LC3 resulted in energy consumption and equivalent CO2 emission reduction ratios of 13.61% and 30.34%, respectively, when the replacement ratio of LC3 is 35%. Therefore, PE fiber-reinforced RFA-LC3-ECC demonstrates excellent mechanical performance as well as considerable environmental benefits.
Funder
Ministry of Science and Technology of China
National Natural Science Foundation of China (NSFC) and Guangdong province
NSFC
Guangdong Basic and Applied Basic Research Foundation
Shenzhen Basic Research Project
Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering
European Union’s Horizon 2020 research and innovation program
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献