Process Parameter Optimization for Hybrid Manufacturing of PLA Components with Improved Surface Quality

Author:

Pascu Sergiu1,Balc Nicolae1ORCID

Affiliation:

1. Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania

Abstract

This paper presents a new method of process parameter optimization, adequate for 3D printing of PLA (Polylactic Acid) components. The authors developed a new piece of Hybrid Manufacturing Equipment (HME), suitable for producing complex parts made from a biodegradable thermoplastic polymer, to promote environmental sustainability. Our new HME equipment produces PLA parts by both additive and subtractive techniques, with the aim of obtaining accurate PLA components with good surface quality. A design of experiments has been applied for optimization purposes. The following manufacturing parameters were analyzed: rotation of the spindle, cutting depth, feed rate, layer thickness, nozzle speed, and surface roughness. Linear regression models and neural network models were developed to improve and predict the surface roughness of the manufactured parts. A new test part was designed and manufactured from PLA to validate the new mathematical models, which can now be applied for producing complex parts made from polymer materials. The neural network modeling (NNM) allowed us to obtain much better precision in predicting the final surface roughness (Ra), as compared to the conventional linear regression models (LNM). Based on these modelling methods, the authors developed a practical methodology to optimize the process parameters in order to improve the surface quality of the 3D-printed components and to predict the actual roughness values. The main advantages of the results proposed for hybrid manufacturing using polymer materials like PLA are the optimized process parameters for both 3D printing and milling. A case study has been undertaken by the authors, who designed a specific test part for their new hybrid manufacturing equipment (HME), in order to test the new methodology of optimizing the process parameters, to validate the capability of the new HME. At the same time, this new methodology could be replicated by other researchers and is useful as a guideline on how to optimize the process parameters for newly developed equipment. The innovative approach holds potential for widespread equipment functionality enhancement among other users.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference13 articles.

1. Kozan, Ž. (2016). Optimization of the Technological Parameters in Hybrid Manufacturing. [Bachelor’s Thesis, University of Ljubljana, Faculty of Mechanical Engineering].

2. Reconstruction of Orbital Wall by Using Hybrid Manufacturing Operations;Pascu;IOP Conf. Ser. Mater. Sci. Eng.,2022

3. Design and Development of a Hybrid Machine Combining Rapid Prototyping and CNC Milling Operation;Amanullah;Procedia Eng.,2017

4. Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining;Lee;J. Mater. Process. Technol.,2014

5. Effects of milling parameters on roughness and burr formation in 3D- printed PLA components;Mehtedi;Procedia Comput. Sci.,2023

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3