Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) and Microcystins by Virgin and Weathered Microplastics in Freshwater Matrices

Author:

Shi Yucong1,Almuhtaram Husein1ORCID,Andrews Robert C.1

Affiliation:

1. Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada

Abstract

Microplastics and per- and polyfluoroalkyl substances (PFAS) both represent persistent groups of environmental contaminants that have been associated with human health risks. Microcystin toxins are produced and stored in the cells of cyanobacteria and may be released into sources of drinking water. Recent concerns have emerged regarding the ability of microplastics to adsorb a range of organic contaminants, including PFAS and microcystins. This study examined the adsorption of two long-chain and two short-chain PFAS, as well as two common microcystins, by both virgin and weathered microplastics in freshwater. Natural weathering of microplastic surfaces may decrease adsorption by introducing hydrophilic oxygen-containing functional groups. Up to 50% adsorption of perfluorooctanesulfonic acid (PFOS) was observed for virgin PVC compared to 38% for weathered PVC. In contrast, adsorption capacities for microcystins by virgin LDPE were approximately 5.0 µg/g whereas no adsorption was observed following weathering. These results suggest that adsorption is driven by specific polymer types and dominated by hydrophobic interactions. This is the first known study to quantify PFAS and microcystins adsorption when considering environmentally relevant concentrations as well as weathered microplastics.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Industrial Research Chair in Drinking Water Treatment at the University of Toronto

Environment and Climate Change Canada

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3