Designing an Oxygen Scavenger Multilayer System Including Volatile Organic Compound (VOC) Adsorbents for Potential Use in Food Packaging

Author:

López-de-Dicastillo Carol1ORCID,López-Carballo Gracia1,Vázquez Pedro2,Schwager Florian2,Aragón-Gutiérrez Alejandro3ORCID,Alonso José M.3,Hernández-Muñoz Pilar1ORCID,Gavara Rafael1ORCID

Affiliation:

1. Packaging Group, Institute of Agrochemistry and Food Technology IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain

2. Evonik Operations GmbH, Germany

3. Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Paterna, Spain

Abstract

Oxygen scavengers are valuable active packaging systems because several types of food deterioration processes are initiated by oxygen. Although the incorporation of oxygen scavenger agents into the polymeric matrices has been the trend in recent years, the release of volatile organic compounds (VOC) as a result of the reaction between oxygen and oxygen scavenger substances is an issue to take into account. This is the case of an oxygen scavenger based on a trans-polyoctenamer rubber (TOR). In this work, the design of an oxygen scavenger multilayer system was carried out considering the selection of appropriate adsorbents of VOCs to the proposed layer structure. Firstly, the retention of some representative organic compounds by several adsorbent substances, such as zeolites, silicas, cyclodextrins and polymers, was studied in order to select those with the best performances. A hydrophilic silica and an odor-adsorbing agent based on zinc ricinoleate were the selected adsorbing agents. The principal VOCs released from TOR-containing films were carefully identified, and their retention first by the pure adsorbents, and then by polyethylene incorporated with the selected compounds was quantified. Detected concentrations decreased by 10- to 100-fold, depending on the VOC.

Funder

Evonik Resources Efficiency GmbH

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3