Drilling of Cross-Ply UHMWPE Laminates: A Study on the Effects of the Tool Geometry and Cutting Parameters on the Integrity of Components

Author:

Díaz-Álvarez Antonio1ORCID,Rodríguez-Millán Marcos1ORCID,Rubio Ignacio1,Kim Daekyum2ORCID,Díaz-Álvarez José13ORCID

Affiliation:

1. Department of Mechanical Engineering, University Carlos III of Madrid, Avda de la Universidad 30, 28911 Leganés, Spain

2. School of Smart Mobility, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

3. Institute of Innovation in Sustainable Engineering (IISE), College of Science and Engineering, University of Derby, Derby DE22 1GB, UK

Abstract

Ultrahigh-molecular-weight polyethylene (UHMWPE) is used in the defence industry mainly owing to its properties, such as excellent dimensional stability, excellent ballistic performance, and light weight. Although UHMWPE laminates are generally studied under impact loads, it is crucial to understand better the optimal machining conditions for assembling auxiliary structures in combat helmets or armour. This work analyses the machinability of UHMWPE laminates by drilling. The workpiece material has been manufactured through hot-pressing technology and subjected to drilling tests. High-speed steel (HSS) twist drills with two different point angles and a brad and spur drill that is 6 mm in diameter have been used for this study. Cutting forces, failure, and main damage modes are analysed, making it possible to extract relevant information for the industry. The main conclusion is that the drill with a smaller point angle has a better cutting force performance and less delamination at the exit zone (5.4 mm at a 60 m/min cutting speed and a 0.05 mm/rev feed) in the samples. This value represents a 46% improvement over the best result obtained in terms of delamination at the exit when using the tool with the larger point angle. However, the brad and spur drill revealed a post-drilling appearance with high fuzzing and delamination.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on composite material drilling with step elliptical sphere-core drill (SESCD);The International Journal of Advanced Manufacturing Technology;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3