The Mechanical Properties Relationship of Radiation-Cured Nanocomposites Based on Acrylates and Cationic Polymerized Epoxies and the Composition of Silane-Modified Tungsten Disulfide Nanoparticles
Author:
Gercci Yarden1, Yosef-Tal Natali1, Bendikov Tatyana2, Dodiuk Hanna1, Kenig Samuel1ORCID, Tenne Reshef2ORCID
Affiliation:
1. Department of Polymer Materials Engineering, Shenkar College, Anna Frank 12, Ramat-Gan 5252626, Israel 2. Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
Abstract
The effect of semiconducting tungsten disulfide (WS2) nanoparticles (NPs), functionalized by either methacryloxy, glycidyl, vinyl, or amino silanes, has been studied in photocuring of acrylate and epoxy resins (the latter photocured according to a cationic mechanism). The curing time, degree of curing (DC), thermal effects, and mechanical properties of the radiation-cured resins were investigated. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses confirmed that a silane coating was formed (1–4 nm) on the NPs’ surface having a thickness of 1–4 nm. Fourier transition infrared (FTIR) was used to determine the DC of the nanocomposite resin. The curing time of the epoxy resin, at 345–385 nm wavelength, was 10 to 20 s, while for acrylate, the curing time was 7.5 min, reaching 92% DC in epoxy and 84% in acrylate. The glass transition temperature (Tg) of the photocured acrylates in the presence of WS2 NPs increased. In contrast to the acrylate, the epoxy displayed no significant variations of the Tg. It was found that the silane surface treatments enhanced the DC. Significant increases in impact resistance and enhancement in shear adhesion strength were observed when the NPs were treated with vinyl silane. A previous study has shown that the addition of WS2 NPs at a concentration of 0.5 wt.% is the optimal loading for improving the resin’s mechanical properties. This study supports these earlier findings not only for the unmodified NPs but also for those functionalized with silane moieties. This study opens new vistas for the photocuring of resins and polymers in general when incorporating WS2 NPs.
Funder
Israel Innovation Authority
Subject
Polymers and Plastics,General Chemistry
Reference27 articles.
1. Chen, C., Li, B., Wang, C., Iwasaki, S., Kanari, M., and Lu, M.K.A.D. (2019). Paint and Coatings Industry, IntechOpen. 2. Photocontrolled Interconversion of Cationic and Radical Polymerizations;Kottisch;J. Am. Chem. Soc.,2017 3. Visible and Long-Wavelength Photoinitiated Cationic Polymerization;Crivello;J. Polym. Sci. Part A Polym. Chem.,2001 4. Aydogan, B., Gacal, B., Yildirim, A., Yonet, N., and Yuksel, Y. (2006). Photochemistry and UV Curing: New Trends, Research Signpost. Available online: https://web.itu.edu.tr/~yusuf/PDF/ch15.PDF. 5. Fullerene-like nanocrystals of tungsten disulfide;Tenne;Adv. Mater.,1993
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|