Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions

Author:

Abdelnaby Mahmoud M.1,Aliyu Mansur1,Nemitallah Medhat A.123,Alloush Ahmed M.1,Mahmoud El-Hassan M.1,Ossoss Khaled M.1,Zeama Mostafa1ORCID,Dowaidar Moataz14ORCID

Affiliation:

1. Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

2. Aerospace Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

3. SDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRC-AI), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

4. Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

The design of novel porous solid sorbents for carbon dioxide capture is critical in developing carbon capture and storage technology (CCS). We have synthesized a series of nitrogen-rich porous organic polymers (POPs) from crosslinking melamine and pyrrole monomers. The final polymer’s nitrogen content was tuned by varying the melamine ratio compared to pyrrole. The resulting polymers were then pyrolyzed at 700 °C and 900 °C to produce high surface area nitrogen-doped porous carbons (NPCs) with different N/C ratios. The resulting NPCs showed good BET surface areas reaching 900 m2 g−1. Owing to the nitrogen-enriched skeleton and the micropore nature of the prepared NPCs, they exhibited CO2 uptake capacities as high as 60 cm3 g−1 at 273 K and 1 bar with significant CO2/N2 selectivity. The materials showed excellent and stable performance over five adsorption/desorption cycles in the dynamic separation of the ternary mixture of N2/CO2/H2O. The method developed in this work and the synthesized NPCs’ performance towards CO2 capture highlight the unique properties of POPs as precursors for synthesizing nitrogen-doped porous carbons with a high nitrogen content and high yield.

Funder

IRC Hydrogen and Energy Storage (HES) at KFUPM

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3