Failure Study of BFRP Joints with Two Epoxy Adhesives under Hygrothermal Coupling

Author:

Niu Ruitao1,Yang Yang2,Lin Yinghao3,Liu Zhen4,Fan Yisa3ORCID

Affiliation:

1. School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

2. Institute of Mechanical Engineering, Materials and Transportation, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg 195251, Russia

3. School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

4. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Basalt Fibre Reinforced Polymer (BFRP)-bonded structures are lightweight, high strength, economical, and environmentally friendly, which is very advantageous in the civil sector. The aim of this paper is to provide a comprehensive account of the hygrothermal degradation and failure mechanisms of BFRP-bonded structures by comparing the residual properties of two epoxy adhesive BFRP single-lap joints after ageing for 240 h, 480 h, and 720 h in an extreme hygrothermal environment with pure water at 80 °C. The hydrophilicity and thermal stability of the two adhesives were firstly compared by water absorption and Thermogravimetric Analysis (TGA) tests, and the hygrothermal degradation of the molecular chains and the reduction in Tg were characterised by Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC) curves. The failure strength and load-displacement curves of the two joints were then compared, and it was found that the strength and stiffness had different trends, while the paired t-test was used to demonstrate the correlation between the failure strength and the adhesive Tg, as well as the difference in the failure mechanisms of the two joints caused by the water absorption rate. The analysis of macrosections and Scanning Electron Microscope (SEM) images summarised the process and reasons for the transition of the failure mode from fibre tearing to hybrid failure, and finally, the changes in elemental concentration and O/C values were analysed by Energy Dispersive X-ray Analysis (EDX), which proved that the degree of hydrolysis could not be used as a judgement of the degradation degree of the joint alone, and provided data support for the application of the BFRP-bonded structure in the humid and hot environment.

Funder

Technology Project of Henan Province

Henan Province of University Technology Innovation team

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3