An Investigation of PPy@1T/2H MoS2 Composites with Durable Photothermal-Promoted Effect in Photo-Fenton Degradation of Methylene Blue and in Water Evaporation

Author:

Lei Yanhua1ORCID,Huo Da1,Liu Hui1,Cheng Sha2,Ding Mengchao1,Jiang Bochen1,Zhang Fei1,Zhang Yuliang1,Gao Guanhui3

Affiliation:

1. Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

2. Qingdao Product Quality Testing Research Institute, Qingdao 266061, China

3. Material Science and Nano engineering Department, Rice University, Houston, TX 77005, USA

Abstract

MoS2 has garnered considerable attention as an exceptional co-catalyst that is capable of significantly enhancing the efficiency of H2O2 decomposition in advanced oxidation processes (AOPs). This improvement allows for a reduction in the required amounts of H2O2 and Fe2+. In this study, we investigated the cyclic durability of photo-Fenton catalysts, focusing on the degradation of pollutants through the introduction of PPy into heterogeneous 1T-2H MoS2 units. The resulting photothermal-Fenton catalysts, comprising non-ferrous Fenton catalysts, demonstrated excellent degradation performance for simulated pollutants. In comparison with 1T-2H MoS2, the PPy@1T-2H MoS2 composite exhibited remarkable stability and photothermal enhancement in the photo-Fenton degradation of methylene blue (MB) under visible light irradiation. The photo-Fenton reaction efficiently degraded contaminants, achieving 99% removal within 5 min and 99.8% removal within 30 min. Moreover, the co-catalyst complex displayed enhanced cyclic stability during the photo-Fenton reaction, with a contaminant removal efficiency of 92%, even after the 13th cyclic test. The combined effects of PPy and 1T-2H MoS2 demonstrated improved efficiency in both photocatalytic and photo-Fenton catalytic reactions. Furthermore, PPy@1T-2H MoS2 exhibited outstanding performance in the photothermal evaporation of water, achieving an efficiency of 86.3% under one solar irradiation.

Funder

Natural Science Foundation of Shanghai

Shanghai Engineering Technology Research Centre of Deep Offshore Material

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3