Aqueous-Cellulose-Solvent-Derived Changes in Cellulose Nanocrystal Structure and Reinforcing Effects

Author:

Tong Yuqi12,Huang Shuting1,Meng Xianjun2ORCID,Wang Yixiang1ORCID

Affiliation:

1. Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada

2. Department of Food Science and Engineering, Shenyang Agricultural University, No. 120 Dongling St., Shenhe District, Shenyang 110866, China

Abstract

Cellulose nanocrystals as reinforcing agents have received considerable interest, and their dimension mainly depends on the original sources of cellulose. We intend to manually modulate the morphology of cellulose nanocrystals by treating them with cellulose solvents so that we can explore their reinforcing capacity. In this work, waste cotton fabric was processed in two aqueous solvents (a sulfuric acid aqueous solution and a NaOH/urea aqueous solution), and the regenerated cellulose was used to produce cellulose nanocrystals using acid hydrolysis. The results revealed that the nanocrystals (RCNC-H) obtained after the treatment in sulfuric acid had a hybrid crystalline structure and a needle-like shape with an aspect ratio of about 15.2, while cotton fabric was completely dissolved in the NaOH/urea aqueous solution, and the regenerated nanocrystals (RCNC-N) displayed a typical crystalline form of cellulose II with a higher crystallinity and a shorter rod-like shape with an aspect ratio of about 6.3. The reinforcing effects of RCNC-H and RCNC-N were evaluated using polyvinyl alcohol (PVA) films as a model, where the addition of RCNC-H resulted in a relatively better tensile strength and oxygen barrier property, and the PVA/RCNC-N films had a slightly lower water vapor permeability. Therefore, this work suggests a new possibility for altering the naturally formed nanostructure of cellulose for different applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Natural Sciences and Engineering Research Council of Canada Discovery Launch Supplement

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3