Mechanical Properties of Bio-Based Sandwich Composites Containing Recycled Polymer Textiles

Author:

Khalili Pooria1ORCID,Skrifvars Mikael1ORCID,Dhakal Hom Nath2ORCID,Dashatan Saeid Hosseinpour3,Danielsson Mikael4,Gràcia Alèxia Feiner5

Affiliation:

1. Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, 510 90 Borås, Sweden

2. Advanced Polymers and Composites (APC), School of Mechanical Design and Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

3. Brunel Composite Centre, Brunel University London, London UB8 3PH, UK

4. Albany International AB, 302 41 Halmstad, Sweden

5. Department of Textile Technology and Design, Universitat Politècnica de Catalunya-Barcelona Tech—UPC, 08034 Barcelona, Spain

Abstract

In this paper, sandwich composites were produced by compression moulding techniques, and they consisted of regenerated cellulose fabric (rayon) and bio-based polypropylene (PP) to form facings, while virgin and recycled polyamide (PA) textiles were used as core materials. To compare the mechanical performance between sandwich composites and typical composite designs, a control composite was produced to deliver the same weight and fiber mass fraction from rayon and PP. To evaluate the influence of recycled textile on the mechanical properties of the composites, a series of flexural, low velocity impact (LVI) and tensile tests were performed. It was found that the incorporation of thicker PA textile enhanced the bending stiffness by two times and the peak flexural force by 70% as compared to those of control. Substitution of a layer of recycled textile for two layers of rayon provided a good level of impact energy absorption capacity (~28 J) and maximum force (~4893–5229 N). The tensile strength of the four sandwich composites was reported to be in the range of 34.20 MPa and 46.80 MPa. This value was 91.90 for the control composite. The 2D cross-section slices of the composite specimens did not show any evidence of fiber tow debonding, fiber bundle splitting, or delamination.

Funder

VINNOVA

knowledge foundation

ÅForsk foundation

University of Borås

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3