Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications

Author:

Rizzuto Carmen1ORCID,Barberi Riccardo C.12ORCID,Castriota Marco12ORCID

Affiliation:

1. Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy

2. CNR-Nanotec c/o Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy

Abstract

In this work, the implementation of an electrochromic device (10 cm × 10 cm in size) for energy saving applications has been presented. As electrochromic system has been used with an electrochromic solution (ECsol) made by ethyl viologen diperchlorate [EV(ClO4)2], 1,1′-diethyl ferrocene (DEFc) and propylene carbonate (PC), as solvent. The final system has been obtained by mixing the ECsol, described above, with a polymeric system made by Bisphenol-A glycerolate (1 glycerol/phenol) diacrylate (BPA) and 2,2-Dimethoxy-2-phenylacetophenone (Irgacure 651) in a weight percentage equal to 60:40% w/w, respectively. Lithography has been used to make a spacer pattern with a thickness of about 15–20 µm between the two substrates. Micro-Raman spectroscopy confirmed the presence of the EV•+ as justified by the blue color of the electrochromic device in the ON state. Electrochemical and optical properties of the electrochromic device have been studied. The device shows reversible electrochromic behavior as confirmed by cyclic color variation due to the reduction and oxidation process of the EV2+/EV•+ couple. The electrochromic device shows a variation of the % transmittance in the visible region at 400 nm of 59.6% in the OFF state and 0.48% at 3.0 V. At 606 nm the transmittance in the bleached state is 84.58% in the OFF state and then decreases to 1.01% when it is fully colored at 3.0 V. In the NIR region at 890 nm, the device shows a transmittance of 74.3% in the OFF state and 23.7% at 3.0 V while at 1165 nm the values of the transmittance changed from 83.21% in the OFF state to 1.58% in the ON state at 3.0 V. The electrochromic device shows high values of CCR% and exhibits excellent values of CE in both visible and near-infrared regions when switched between OFF/ON states. In the NIR region at 890 nm, electrochromic devices can be used for the energy-saving of buildings with a promising CE of 120.9 cm2/C and 420.1 cm2/C at 1165 nm.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3