Biodegradable Nanofiber/Metal–Organic Framework/Cotton Air Filtration Membranes Enabling Simultaneous Removal of Toxic Gases and Particulate Matter

Author:

Ryu Sujin1ORCID,Kim Doyeon12ORCID,Lee Hyewon1,Kim Yoonjin1,Lee Youngbok234,Kim Myungwoong5ORCID,Lee Heedong1ORCID,Lee Hoik12ORCID

Affiliation:

1. Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea

2. HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea

3. Department of Applied Chemistry, Hanyang University, Ansan 15588, Republic of Korea

4. Department of Chemical and Molecular Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea

5. Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea

Abstract

The typical filters that protect us from harmful components, such as toxic gases and particulate matter (PM), are made from petroleum-based materials, which need to be replaced with other environmentally friendly materials. Herein, we demonstrate a route to fabricate biodegradable and dual-functional filtration membranes that effectively remove PM and toxic gases. The membrane was integrated using two layers: (i) cellulose-based nanofibers for PM filtration and (ii) metal–organic framework (MOF)-coated cotton fabric for removal of toxic gases. Zeolitic imidazolate framework (ZIF-8) was grown from the surface of the cotton fabric by the treatment of cotton fabric with an organic precursor solution and subsequent immersion in an inorganic precursor solution. Cellulose acetate nanofibers (NFs) were deposited on the MOF-coated cotton fabric via electrospinning. At the optimal thickness of the NF layer, the quality factor of 18.8 × 10−2 Pa−1 was achieved with a filtration efficiency of 93.1%, air permeability of 19.0 cm3/cm2/s, and pressure drop of 14.2 Pa. The membrane exhibits outstanding gas adsorption efficiencies (>99%) for H2S, formaldehyde, and NH3. The resulting membrane was highly biodegradable, with a weight loss of 62.5% after 45 days under standard test conditions. The proposed strategy should provide highly sustainable material platforms for practical multifunctional membranes in personal protective equipment.

Funder

Korea Institute of Industrial Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3