Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films

Author:

Zhang Wei1,Zhou Wentao1,Zhang Zisen2,Zhang Di2,Guo Zhengzheng1,Ren Penggang1ORCID,Liu Fei3

Affiliation:

1. Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China

2. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

3. School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China

Abstract

Chitosan and its derivatives are widely used in food packaging, pharmaceutical, biotechnology, medical, textile, paper, agriculture, and environmental industries. However, the flexibility of chitosan films is extremely poor, which limits its relevant applications to a large extent. In this paper, chitosan/sorbitol/nano-silica (CS/sorbitol/SiO2) composite films were prepared by the casting film method using chitosan, sorbitol, Tween-80 and nano-SiO2 as raw materials. The structure of the films was characterized by infrared spectroscopy, electron scanning microscopy, and X-ray diffraction analysis. The effects of sorbitol and nano-silica dosage on the mechanical properties, thermal properties and water vapor barrier properties of the composite film were investigated. The results show that with the gradual increase in sorbitol (≤75 wt %), the elongation at the break of chitosan/sorbitol films significantly increased. When the addition of sorbitol was 75 wt %, the elongation at break of the chitosan/sorbitol composite film was 13 times higher than that of the chitosan film. Moreover, nano-SiO2 can further improve the mechanical properties and thermal stability of the chitosan/sorbitol composite films. When the amount of nano-silica was 4.5 wt %, the composite film became more flexible, with a maximum elongation of 90.8% (which is 14 times that of chitosan film), and its toughness increased to 10.52 MJm−3 (which is 6 times that of chitosan film). This study balances the tensile strength and elongation at break of the composite films by adding a plasticizer and nano-filler, providing a reference for the preparation of chitosan composites or their blending with other polymers, and has practical guiding significance for the industrial production of biomass plastics.

Funder

National Natural Science Foundation of China

Xi’an Science and Technology Plan Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3