Ribociclib Hybrid Lipid–Polymer Nanoparticle Preparation and Characterization for Cancer Treatment

Author:

Al-Shdefat Ramadan1,Hailat Mohammad2ORCID,Alshogran Osama Y.3ORCID,Abu Dayyih Wael4ORCID,Gardouh Ahmed15ORCID,Al Meanazel Osaid6

Affiliation:

1. Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan

2. College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan

3. Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan

4. Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan

5. Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt

6. Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan

Abstract

Ribociclib is a newly approved orally administered drug for breast cancer. This study aimed to prepare, characterize, and evaluate hybrid lipid–polymer nanoparticles (PLNs) of ribociclib to enhance its in vitro dissolution rate, pharmacokinetics, and anticancer efficacy. Ribociclib-loaded PLNs were prepared by solvent evaporation using the Box–Behnken design to optimize formulation variables. Particle size, entrapment efficiency, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), in vitro release cytotoxicity, molecular modeling, and pharmacokinetic studies were examined. The ribociclib-loaded PLN (formula 1, F1) was optimized in terms of particle size (266.9 ± 4.61 nm) and encapsulation efficiency (59.1 ± 2.57 mg/mL). DSC and thermogravimetric characterization showed the absence of a crystalline structure in the prepared PLNs, confirmed by FTIR, and showed no interactions between the components and the drug. AFM showed well-dispersed heterogeneously shaped nanoparticles. The in vitro release profile exhibited significant results for the optimized formula, reaching 100% at 600 and 90 min at pH 6.8 and 1.2, respectively. The low IC50 obtained by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay suggests that optimized PLN might serve as an effective delivery vehicle for cancer treatment, especially breast and lung cancer. Molecular modeling revealed several hydrogen bonds. A pharmacokinetic study in rats showed that the ribociclib formula had a 6.5-fold increase in maximum concentration (Cmax) and a 5.6-fold increase in area under the curve (AUC). Regarding the everted intestinal sac absorption, formula 1 increased ribociclib penetration relative to the physical combination and pure medication. In conclusion, optimized PLNs with enhanced physicochemical and cytotoxic properties and improved pharmacokinetic parameters were successfully prepared.

Funder

Scientific Research Support Fund (SRSF) & Innovation, Hashemite Kingdom of Jordan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3