3D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applications

Author:

Kalva Sumama Nuthana12,Ali Fawad1,Velasquez Carlos A.2,Koç Muammer1

Affiliation:

1. Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar

2. Surgical Research Section, Innovation Unit, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar

Abstract

Magnesium (Mg) is a promising material for bone tissue engineering applications due to it having similar mechanical properties to bones, biocompatibility, and biodegradability. The primary goal of this study is to investigate the potential of using solvent-casted polylactic acid (PLA) loaded Mg (WE43) composites as filament feedstock for fused deposition modeling (FDM) 3D Printing. Four PLA/Magnesium (WE43) compositions (5, 10, 15, 20 wt%) are synthesized and produced into filaments, then used to print test samples on an FDM 3D printer. Assessments are made on how Mg incorporation affected PLA’s thermal, physicochemical, and printability characteristics. The SEM study of the films shows that the Mg particles are uniformly distributed in all the compositions. The FTIR results indicate that the Mg particles blend well with the polymer matrix and there is no chemical reaction between the PLA and the Mg particles during the blending process. The thermal studies show that the addition of Mg leads to a small increase in the melting peak reaching a maximum of 172.8 °C for 20% Mg samples. However, there are no dramatic variations in the degree of crystallinity among the Mg-loaded samples. The filament cross-section images show that the distribution of Mg particles is uniform up to a concentration of 15% Mg. Beyond that, non-uniform distribution and an increase in pores in the vicinity of the Mg particles is shown to affect their printability. Overall, 5% and 10% Mg composite filaments were printable and have the potential to be used as composite biomaterials for 3D-printed bone implants.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3