Effect of Drug–Polymer Interaction in Amorphous Solid Dispersion on the Physical Stability and Dissolution of Drugs: The Case of Alpha-Mangostin

Author:

Budiman Arif1,Nurani Neng Vera1,Laelasari Eli1,Muchtaridi Muchtaridi2ORCID,Sriwidodo Sriwidodo1ORCID,Aulifa Diah Lia2ORCID

Affiliation:

1. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia

2. Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia

Abstract

Improving drug solubility is necessary for formulations of poorly water-soluble drugs, especially for oral administration. Amorphous solid dispersions (ASDs) are widely used in the pharmaceutical industry to improve the physical stability and solubility of drugs. Therefore, this study aims to characterize interaction between a drug and polymer in ASD, as well as evaluate the impact on the physical stability and dissolution of alpha-mangostin (AM). AM was used as a model of a poorly water-soluble drug, while polyvinylpyrrolidone (PVP) and eudragit were used as polymers. The amorphization of AM-eudragit and AM-PVP was confirmed as having a halo pattern with powder X-ray diffraction measurements and the absence of an AM melting peak in the differential scanning calorimetry (DSC) curve. The solubility of amorphous AM increased in the presence of either eudragit or PVP due to amorphization and interactions of AM-polymer. Furthermore, FT-IR spectroscopy and in silico studies revealed hydrogen bond interactions between the carbonyl group of AM and the proton of eudragit as well as PVP. AM-eudragit with a ratio of 1:1 recrystallized after 7 days of storage at 25 °C and 90% RH, while the AM-PVP 1:4 and 1:10 samples retained the X-ray halo patterns, even under humid conditions. In a dissolution test, the presence of polymer in ASD significantly improved the dissolution profile due to the intermolecular interaction of AM-polymer. AM-eudragit 1:4 maintained AM supersaturation for a longer time compared to the 1:1 sample. However, a high supersaturation was not achieved in AM-PVP 1:10 due to the formation of large agglomerations, leading to a slow dissolution rate. Based on the results, interaction of AM-polymer in ASD can significantly improve the pharmaceutical properties of AM including the physical stability and dissolution.

Funder

Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3