Acquiring Process Knowledge in Extrusion-Based Additive Manufacturing via Interpretable Machine Learning

Author:

Pelzer Lukas1ORCID,Schulze Tobias2ORCID,Buschmann Daniel2,Enslin Chrismarie3,Schmitt Robert2,Hopmann Christian1

Affiliation:

1. Institute for Plastics Processing at RWTH Aachen University, 52074 Aachen, Germany

2. Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, 52074 Aachen, Germany

3. Cybernetics Lab IMA & IfU, RWTH Aachen University, 52068 Aachen, Germany

Abstract

Additive manufacturing (AM), especially the extrusion-based process, has many process parameters which influence the resulting part properties. Those parameters have complex interdependencies and are therefore difficult if not impossible to model analytically. Machine learning (ML) is a promising approach to find suitable combinations of process parameters for manufacturing a part with desired properties without having to analytically model the process in its entirety. However, ML-based approaches are typically black box models. Therefore, it is difficult to verify their output and to derive process knowledge from such approaches. This study uses interpretable machine learning methods to derive process knowledge from interpreted data sets by analyzing the model’s feature importance. Using fused layer modeling (FLM) as an exemplary manufacturing technology, it is shown that the process can be characterized entirely. Therefore, sweet spots for process parameters can be determined objectively. Additionally, interactions between parameters are discovered, and the basis for further investigations is established.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3