Preparation and Performance of H-PDMS/PMHS/OTS Hybrid Nanosilica Hydrophobic and Self-Cleaning Coatings on Phosphogypsum Surface

Author:

Yang Guang1,Chen Zhonghua2,Lv Changwei3,Deng Lei3,Luo Xiaofeng3,Li Yi1,He Songtao2,Liu Qibin1ORCID

Affiliation:

1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

2. Guizhou Phosphating Green Environmental Protection Industry Co., Ltd., Guiyang 551100, China

3. KZJ New Materials Group Guizhou Co., Ltd., Longli 551206, China

Abstract

Hemihydrate phosphogypsum, an industrial solid waste product of phosphoric acid production, is abundant and inexpensive. If the problem of poor water resistance is solved, this material could be substituted for cement and other traditional energy-consuming cementitious materials in the construction industry. This approach would confer important economic and environmental benefits while promoting the resource utilization of phosphogypsum (PG). In this study, hydrophobic and self-cleaning coatings of H-PDMS/PMHS/OTS hybrid nanosilica were prepared on a post-hydroxylated PG surface using sol–gel and impregnation methods. The water contact angle, Fourier-transform infrared spectroscopy, Three-dimensional surface morphology and roughness analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, surface abrasion tests, and tape adhesion tests were used to evaluate the hydrophobicity of the coatings. The results demonstrated that the in situ reaction produced a hydrophobic siloxane/nanosilica hybrid network that bonded to the PG surface via hydrogen bonding, making the otherwise completely hydrophilic PG hydrophobic (PGH-3, contact angle (CA) = 144.1°). The PGH-3 sample exhibited excellent chemical stability, maintaining a contact angle greater than 135° under strongly acidic or alkaline conditions. The contact angle remained at 123.7° after 50 tape-bonding tests. After 100 wear cycles, the contact angle remained at 121.9°. This study presents an environmentally friendly method and a straightforward application procedure to impart hydrophobicity to solid waste PG. Its potential is thus demonstrated in the field of PG-based construction materials and the comprehensive utilization of solid waste.

Funder

Leizhi Innovation Fund

Guizhou Phosphating Green Environmental Protection Industry Co., Ltd.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3