Effect of Spent Coffee Grounds on the Crystallinity and Viscoelastic Behavior of Polylactic Acid Composites

Author:

de Bomfim Anne Shayene Campos1,de Oliveira Daniel Magalhães1ORCID,Benini Kelly Cristina Coelho de Carvalho1ORCID,Cioffi Maria Odila Hilário1ORCID,Voorwald Herman Jacobus Cornelis1,Rodrigue Denis2ORCID

Affiliation:

1. Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, SP, Brazil

2. Center for Research on Advanced Materials (CERMA), Department of Chemical Engineering, Université Laval, Quebec, QC G1V 0A6, Canada

Abstract

This work investigated the addition of spent coffee grounds (SCG) as a valuable resource to produce biocomposites based on polylactic acid (PLA). PLA has a positive biodegradation effect but generates poor proprieties, depending on its molecular structure. The PLA and SCG (0, 10, 20 and 30 wt.%) were mixed via twin-screw extrusion and molded by compression to determine the effect of composition on several properties, including mechanical (impact strength), physical (density and porosity), thermal (crystallinity and transition temperature) and rheological (melt and solid state). The PLA crystallinity was found to increase after processing and filler addition (34–70% in the 1st heating) due to a heterogeneous nucleation effect, leading to composites with lower glass transition temperature (1–3 °C) and higher stiffness (~15%). Moreover, the composites had lower density (1.29, 1.24 and 1.16 g/cm3) and toughness (30.2, 26.8 and 19.2 J/m) as the filler content increased, which is associated with the presence of rigid particles and residual extractives from SCG. In the melt state, polymeric chain mobility was enhanced, and composites with a higher filler content became less viscous. Overall, the composite with 20 wt.% SCG provided the most balanced properties being similar to or better than neat PLA but at a lower cost. This composite could be applied not only to replace conventional PLA products, such as packaging and 3D printing, but also to other applications requiring lower density and higher stiffness.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3