Sustainable Nanomagnetism: Investigating the Influence of Green Synthesis and pH on Iron Oxide Nanoparticles for Enhanced Biomedical Applications

Author:

Abdullah Johar Amin Ahmed1ORCID,Díaz-García Álvaro2ORCID,Law Jia Yan2ORCID,Romero Alberto3ORCID,Franco Victorino2ORCID,Guerrero Antonio1ORCID

Affiliation:

1. Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain

2. Departamento de Física de Materia Condensada, ICMS-CSIC, Universidad de Sevilla, 41012 Sevilla, Spain

3. Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain

Abstract

This study comprehensively analyzed green nanomagnetic iron oxide particles (GNMIOPs) synthesized using a green method, investigating their size, shape, crystallinity, aggregation, phase portions, stability, and magnetism. The influence of pH and washing solvents on the magnetic properties of the nanoparticles and their incorporation into PCL membranes was examined for biomedical applications. Polyphenols were utilized at different pH values (1.2, 7.5, and 12.5), with washing being performed using either ethanol or water. Characterization techniques, including XRD, SEM, TEM, FTIR, and VSM, were employed, along with evaluations of stability, magnetic properties, and antioxidant activity. The findings indicate that both pH levels and the washing process exert a substantial influence on several properties of NMIOPs. The particle sizes ranged from 6.6 to 23.5 nm, with the smallest size being observed for GNMIOPs prepared at pH 12.5. Higher pH values led to increased crystallinity, cubic Fe3O4 fractions, and reduced crystalline anisotropy. SEM and TEM analyses showed pH-dependent morphological variations, with increased aggregation being observed at lower pH values. GNMIOPs displayed exceptional magnetic behavior, with the highest saturation magnetization being observed in GNMIOPs prepared at pH 7.5 and 12.5 and subsequently washed with ethanol. The zeta potential measurements indicated a stability range for GNMIOPs spanning from −31.8 to −41.6 mV, while GNMIOPs synthesized under high-pH conditions demonstrated noteworthy antioxidant activity. Furthermore, it was explored how pH and washing solvent affected the morphology, roughness, and magnetic properties of GNMIOP-infused nanofiber membranes. SEM showed irregularities and roughness due to GNMIOPs, varying with pH and washing solvent. TEM confirmed better dispersion with ethanol washing. The magnetic response was stronger with ethanol-washed GNMIOPs, highlighting the influence of pH and washing solvent on membrane characteristics.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3