Studies on Agrochemical Controlled Release Behavior of Copolymer Hydrogel with PVA Blends of Natural Polymers and Their Water-Retention Capabilities in Agricultural Soil

Author:

Jabrail Fawzi Habeeb1ORCID,Mutlaq Maysam Salih1,Al-Ojar Roua’a Kassim2

Affiliation:

1. Polymer Research Laboratory, Department of Chemistry, College of Science, University of Mosul, Mosul 41002, Iraq

2. College of Pharmacy, Nineveh University, Mosul 41002, Iraq

Abstract

Agricultural technical development relies exclusively on the effective delivery of agrochemicals and water to plants and on reducing the harmful effects of agrochemicals on useful organisms in the soil. In this study, super-absorbent hydrogels were prepared in the form of microspheres using gum Arabic (GA), which was copolymerized once with chitosan (CS) and once with poly (vinyl alcohol) (PVA). To impart mechanical strength to the hydrogel microspheres, a covalent cross-linker (N,N′-methylenebisacrylamide (MBA)) was used for the PVA/GA hydrogel, and an ionic cross-linker (sodium hexametaphosphate (SHMP)) was used for the CS/GA hydrogel. The prepared PVA/GA-CH and CS/GA-PH hydrogel microspheres showed different degrees of swelling (DSs) in the following solution media: deionized water (DW), river water (RW), and buffered solutions (pH 4; pH 9). The PVA/GA-CH hydrogel microspheres showed a maximum DS of 84 g/g in the RW, while the CS/GA-PH hydrogel microspheres showed a maximum DS of 63 g/g in the buffered solution at a pH 9. The water-retention capabilities of the hydrogels were studied using a mixture of 0.5% (w/w) hydrogel microspheres in agricultural soil; the composite showed an additional 20 days of water retention in comparison with a control sample consisting of soil alone. The hydrogels were loaded with urea, which is an important fertilizer in the field of agriculture. The PVA/GA-CH hydrogel microspheres showed a maximum loading percentage (Lmax%) of 89% (w/w), while the CS/GA-PH hydrogel microspheres showed an Lmax% = 79.75% (w/w) for urea. The urea-release behaviors of the hydrogel microspheres were studied under different release media and temperature conditions. In practice, the PVA/GA-CH hydrogel microspheres showed a better release profile in the RW at 10 °C, while the CS/GA-PH hydrogel microspheres showed a more controlled release in media at a pH 9 and at 30 °C. The urea-loaded microspheres, aside from those following the release, were characterized via FTIR and SEM. In contrast, virgin microspheres were characterized using XRD,1H NMR, (TGA and DSC), and the maximum degree of swelling, in addition to being subjected to SEM and FTIR analyses.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3