Affiliation:
1. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
2. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract
Self-polymerization epoxy/phthalonitrile (APPEN) pre-polymers were studied systematically, and then, gelation time and differential scanning calorimetry (DSC) were employed to investigate their curing behaviors. Taking advantage of orthogonal test analysis, the key factors that affected the co-polymerization of APPEN were defined and the appropriate pre-polymerization conditions were analyzed. A possible curing mechanism of APPEN was proposed. Then, the thermomechanical and mechanical properties of glass-fiber-reinforced APPEN laminates (APPEN/GF) prepared at 180 °C were analyzed to understand the cross-linked and aggregation structures. Fracture surface of the composite laminates was also investigated to reveal the copolymerization degree and the interfacial binding. The results indicated that APPEN/GF composites exhibit outstanding mechanical and thermomechanical properties (flexural strength, 712 MPa, flexural modulus, 38 GPa, and Tg > 185 °C). The thermal stability (T5% > 334 °C and IPDT reached 1482 °C) of APPEN/GF composites was also investigated to further reveal the copolymerization between epoxy resin and aminophthalonitrile, which may be beneficial to the application of epoxy-matrix-based composites in the field of high-performance polymer composites.
Funder
Fundamental research Funds for the central universities
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献