Structural, Optical, and Electrical Parameters of Doped PVA/PVP Blend with TPAI or THAI Salt

Author:

El-Naggar A. M.1,Brnawi Shadia Z.2,Kamal A. M.2,Albassam A. A.1,Heiba Zein K.3ORCID,Mohamed Mohamed Bakr3ORCID

Affiliation:

1. Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

2. Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

3. Physics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

Abstract

The 70% polyvinyl alcohol/30% polyvinyl pyrrolidone (PVA/PVP) polymer blends, with different weight ratios of tetrapropylammonium iodide (TPAI) or tetrahexylammonium iodide (THAI) salt, were prepared using dimethyl sulfoxide (DMSO) as a solvent. The X-ray diffraction technique was used to trace the crystalline nature of the formed blends. The SEM and EDS techniques were applied to figure out the morphology of the blends. The variation in the FTIR vibrational bands was used to investigate the chemical composition and the effect of different salt doping on the functional groups of the host blend. The influence of the salt type (TPAI or THAI) and its ratio on the linear and nonlinear optical parameters for the doped blends were investigated in detail. Absorbance and reflectance are highly enhanced in the UV region reaching a maximum for the blend with 24% TPAI or THAI; so, it can be employed as shielding materials for UVA and UVB types. The direct (5.1 eV) and indirect (4.8 eV) optical bandgaps were reduced continuously to (3.52, 3.63 eV) and (3.45, 3.51 eV) while increasing the content of TPAI or THAI, respectively. The blend doped with 24% wt TPAI exhibited the highest refractive index (around 3.5 in 400–800 nm). The DC conductivity is affected by the content and type of salt, its dispersion, and blend-salt interaction. The activation energies of different blends were obtained by applying the Arrhenius formula.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3