Weakly Cross-Linked Anionic Copolymers: Kinetics of Swelling and Water-Retaining Properties of Hydrogels

Author:

Iliasov Leonid1,Shibaev Andrey23ORCID,Panova Irina1,Kushchev Petr4,Philippova Olga2ORCID,Yaroslavov Alexander1

Affiliation:

1. Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia

2. Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia

3. Department of Chemistry, Karaganda E.A. Buketov University, University Street 28, 100028 Karaganda, Kazakhstan

4. Department of Chemistry, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia

Abstract

Six cross-linked copolymers consisting of sodium acrylate, N-acrylamide, starch fragments and a cross-linker were synthesized, potentially suitable for use in agriculture as superabsorbents. The copolymers had the same content of carboxyl groups equal to 6.2 mmoles per 1 g of copolymer and the content of cross-linker (Q) varied from 0.04 up to 1 wt.%. The copolymers swelled in a pH 6.5 aqueous buffer solution thus giving hydrogel particles, which were characterized by a set of methods including gravimetry, rheometry, swelling pressure analysis, equilibrium centrifugation and water retention analysis with the following main conclusions. An increase in Q decreases the equilibrium degree of swelling. When swelling in a solid substrate, sand or soil, the equilibrium degree of swelling shows the maximum at Q = 0.14 wt.%. The cross-linking degree controls the swelling pressure of hydrogels and water-retaining properties of solid substrates with embedded hydrogels; in both cases, the maximum effects are observed at Q = 0.14 wt.%. These extreme dependences set the algorithm for synthesis of polymeric superabsorbents and optimization of their operational characteristics.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3