Innovative Polymer Composites with Natural Fillers Produced by Additive Manufacturing (3D Printing)—A Literature Review

Author:

Anwajler Beata1ORCID,Zdybel Ewa2ORCID,Tomaszewska-Ciosk Ewa2ORCID

Affiliation:

1. Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland

2. Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 25 Norwida Street, 50-375 Wroclaw, Poland

Abstract

In recent years, plastics recycling has become one of the leading environmental and waste management issues. Along with the main advantage of plastics, which is undoubtedly their long life, the problem of managing their waste has arisen. Recycling is recognised as the preferred option for waste management, with the aim of reusing them to create new products using 3D printing. Additive manufacturing (AM) is an emerging and evolving rapid tooling technology. With 3D printing, it is possible to achieve lightweight structures with high dimensional accuracy and reduce manufacturing costs for non-standard geometries. Currently, 3D printing research is moving towards the production of materials not only of pure polymers but also their composites. Bioplastics, especially those that are biodegradable and compostable, have emerged as an alternative for human development. This article provides a brief overview of the possibilities of using thermoplastic waste materials through the application of 3D printing, creating innovative materials from recycled and naturally derived materials, i.e., biomass (natural reinforcing fibres) in 3D printing. The materials produced from them are ecological, widely available and cost-effective. Research activities related to the production of bio-based materials have gradually increased over the last two decades, with the aim of reducing environmental problems. This article summarises the efforts made by researchers to discover new innovative materials for 3D printing.

Funder

Wroclaw University of Environmental and Life Sciences

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3