Catalytic Soot Oxidation Activity of NiO–CeO2 Catalysts Prepared by a Coprecipitation Method: Influence of the Preparation pH on the Catalytic Performance

Author:

Bendieb Aberkane AmarORCID,Yeste María Pilar,Fayçal Djazi,Goma DanielORCID,Cauqui Miguel ÁngelORCID

Abstract

A series of NiO–CeO2 mixed oxide catalysts have been synthesized by a modified coprecipitation method at three different pH values (pH = 8, 9, and 10). The NiO–CeO2 mixed oxide samples were characterized by TGA, XRD, inductively coupled plasma atomic emission spectroscopy (ICP-AES), FTIR, Brunauer–Emmett–Teller (BET) surface area, H2 temperature-programmed reduction (H2-TPR), and electron microscopy (high-angle annular dark-field transmission electron microscopy/energy-dispersive X-ray spectroscopy (HAADF-TEM/EDS)). The catalytic activities of the samples for soot oxidation were investigated under loose and tight contact conditions. The catalysts exhibited a high BET surface area with average crystal sizes that varied with the pH values. Electron microscopy results showed the formation of small crystallites (~5 nm) of CeO2 supported on large plate-shaped particles of NiO (~20 nm thick). XRD showed that a proportion of the Ni2+ was incorporated into the ceria network, and it appeared that the amount on Ni2+ that replaced Ce4+ was higher when the synthesis of the mixed oxides was carried out at a lower pH. Among the synthesized catalysts, Ni-Ce-8 (pH = 8) exhibited the best catalytic performance.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3