Study of the Catalytic Strengthening of a Vacuum Carburized Layer on Alloy Steel by Rare Earth Pre-Implantation

Author:

Li ,Li ,Xing ,Wang ,Huang ,Guo ,Liu

Abstract

Conventional carburizing has disadvantages, such as high energy consumption, large deformation of parts, and an imperfect structure of the carburizing layer. Hence, a rare earth ion pre-implantation method was used to catalyze and strengthen the carburized layer of 20Cr2Ni4A alloy steel. In this study, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive microanalysis (EDS), transmission electron microscopy (TEM), and Rockwell/Vickers hardness testing were used to analyze the microstructure, phase composition, retained austenite content, hardness, carburized layer thickness, and carbon diffusion. The results showed that lanthanum and yttrium ions implanted into the 20Cr2Ni4A steel formed solid solutions of rare earth ions and a large number of dislocations, which improved the diffusion coefficient of carbon elements on the carburized surface and the uniformity of the carbon distribution. Simultaneously, rare earth ion implantation improved the structure and hardness of the vacuum carburized layer. Compared to the lanthanum ion implantation, yttrium ion implantation caused the structure of the carburized layer to be finer, and the carbon diffusion coefficient increased by 1.17 times; in addition, the surface hardness of the carburized layer was 61.8 HRC.

Funder

The 973 Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3