Bio-Inspired Photoelectric Dual-Mode Sensor Based on Photonic Crystals for Human Motion Sensing and Monitoring

Author:

Zheng Wenxiang1,Wang Zhibin1,Zhang Mengnan1,Niu Yanxin1,Wu Yuchuan1,Guo Pengxin1,Zhang Niu2ORCID,Meng Zihui1,Murtaza Ghulam3ORCID,Qiu Lili1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Analysis & Testing Centre, Beijing Institute of Technology, Beijing 100081, China

3. School of Science, Minzu University of China, Beijing 100074, China

Abstract

Photoelectric dual-mode sensors, which respond to strain signal through photoelectric dual-signals, hold great promise as wearable sensors in human motion monitoring. In this work, a photoelectric dual-mode sensor based on photonic crystals hydrogel was developed for human joint motion detection. The optical signal of the sensor originated from the structural color of photonic crystals, which was achieved by tuning the polymethyl methacrylate (PMMA) microspheres diameter. The reflective peak of the sensor, based on 250 nm PMMA PCs, shifted from 623 nm to 492 nm with 100% strain. Graphene was employed to enhance the electrical signal of the sensor, resulting in a conductivity increase from 9.33 × 10−4 S/m to 2 × 10−3 S/m with an increase in graphene from 0 to 8 mg·mL−1. Concurrently, the resistance of the hydrogel with 8 mg·mL−1 graphene increased from 160 kΩ to 485 kΩ with a gauge factor (GF) = 0.02 under 100% strain, while maintaining a good cyclic stability. The results of the sensing and monitoring of finger joint bending revealed a significant shift in the reflective peak of the photoelectric dual-mode sensor from 624 nm to 526 nm. Additionally, its resistance change rate was measured at 1.72 with a 90° bending angle. These findings suggest that the photoelectric dual-mode sensor had the capability to detect the strain signal with photoelectric dual-mode signals, and indicates its great potential for the sensing and monitoring of joint motion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3