High-Strength Controllable Resin Plugging Agent and Its Performance Evaluation for Fractured Formation

Author:

Liu Xiongwei12,Qi Biao12,Chen Xiuping12,Shen Ziyao3,Yang Jingbin3ORCID

Affiliation:

1. Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-Vuggy Reservoirs, SINOPEC, Xinjiang 830011, China

2. SINOPEC Northwest Company of China Petroleum and Chemical Corporation, Xinjiang 830011, China

3. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Lost circulation is a common and complicated situation in drilling engineering. Serious lost circulation may lead to pressure drop in the well, affect normal drilling operations, and even cause wellbore instability, formation fluid flooding into the wellbore, and blowout. Therefore, appropriate preventive and treatment measures need to be taken to ensure the safe and smooth operation of drilling operations. So, it is necessary to conduct in-depth research on the development and performance of the plugging materials. In this study, urea formaldehyde resin with high temperature resistance and strength was used as the main raw material, and the curing conditions were optimized and adjusted by adding a variety of additives. The curing time, compressive strength, temperature resistance, and other key performance indexes of the resin plugging agent were studied, and a resin plugging agent system with excellent plugging performance was prepared. The formula is as follows: 25% urea formaldehyde resin +1% betaine +1% silane coupling agent KH-570 + 3% ammonium chloride +1% hexamethylenetetramine +1% sodium carboxymethyl cellulose. The optimal curing temperature is between 60 and 80 °C, with a controllable curing time of 1–3 h. Experimental studies examined the rheological and curing properties of the resin plugging agent system. The results showed that the viscosity of the high-strength curable resin system before curing remained stable with increasing shear rates. Additionally, the storage modulus and loss modulus of the resin solutions increased with shear stress, with the loss modulus being greater than the storage modulus, indicating a viscous fluid. The study also investigated the effect of different salt ion concentrations on the curing effect of the resin plugging system. The results showed that formation water containing Na+ at concentrations between 500 mg/L and 10,000 mg/L increased the resin’s curing strength and reduced curing time. However, excessively high concentrations at lower temperatures reduced the curing strength. Formation water containing Ca2+ increased the curing time of the resin plugging system and significantly impacted the curing strength, reducing it to some extent. Moreover, the high-strength curable resin plugging agent system can effectively stay in various fracture types (parallel, wedge-shaped) and different fracture sizes, forming a high-strength consolidation under certain temperature conditions for effective plugging. In wedge-shaped fractures with a width of 10 mm, the breakthrough pressure of the high-strength curable resin plugging agent system reached 8.1 MPa. As the fracture width decreases, the breakthrough pressure increases, reaching 9.98 MPa in wedge-shaped fractures with an outlet fracture width of 3 mm, forming a high-strength plugging layer. This research provides new ideas and methods for solving drilling fluid loss in fractured loss zones and has certain application and promotion value.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3