Evolution Process of Fault Silica Aerogel under High Temperatures: A Molecular Dynamics Approach

Author:

Yue Wenping1,Luo Tao1,Liu Kaide1

Affiliation:

1. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, The Youth Innovation Team of Shaanxi Universities, College of Civil Engineering, Xijing University, Xi’an 710123, China

Abstract

Building fire will seriously threaten human safety. Silica aerogel with low thermal conductivity and thermal stability as fire-retardant material has been widely used in building fireproof structures. However, the natural fragility of silica aerogel will limit its application. In this work, the effects of faults on the thermal stability of silica aerogel are studied by molecular dynamics simulation with large simulation time (20 ns). Additionally, the atomic model of silica aerogel with random faults is built by a straining structure (tensile strains are 10%, 20%, 30%, and 40%). It is found that when the tensile strain is less than 20%, the silica backbone can remain stable. The effects of faults on the thermal stability can be neglected. The silica backbone thermally vibrates during the heating process. However, when the tensile strain is over 30%, it is observed that the faults will enhance the silica backbone merging. Silica aerogel can be stable under 800 K. It is believed that the results of this study will pave the way for the development of fireproof materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3