Synthesis and Performance Evaluation of High-Temperature-Resistant Extreme-Pressure Lubricants for a Water-Based Drilling Fluid Gel System

Author:

Huang Shengming12ORCID,Dong Tengfei234,Jiang Guancheng123,Yang Jun12ORCID,Yang Xukun12,Wang Quande12

Affiliation:

1. College of Petroleum Engineering, Ministry of Education (MOE) Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

3. National Engineering Research Center of Oil & Gas Drilling and Completion Technology, Beijing 102206, China

4. College of Science, China University of Petroleum (Beijing), Beijing 102249, China

Abstract

Addressing the high friction and torque challenges encountered in drilling processes for high-displacement wells, horizontal wells, and directional wells, we successfully synthesized OAG, a high-temperature and high-salinity drilling fluid lubricant, using materials such as oleic acid and glycerol. OAG was characterized through Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The research findings demonstrate the excellent lubricating performance of OAG under high-temperature and high-salinity conditions. After adding 1.0% OAG to a 4% freshwater-based slurry, the adhesion coefficient of the mud cake decreased to 0.0437, and at a dosage of 1.5%, the lubrication coefficient was 0.032, resulting in a reduction rate of 94.1% in the lubrication coefficient. After heating at 200 °C for 16 h, the reduction rate of the lubrication coefficient reached 93.6%. Even under 35% NaCl conditions, the reduction rate of the lubrication coefficient remained at 80.3%, indicating excellent lubrication retention performance. The lubricant OAG exhibits good compatibility with high-density drilling fluid gel systems, maintaining their rheological properties after heating at 200 °C and reducing filtration loss. The lubrication mechanism analysis indicates that OAG can effectively adsorb onto the surface of N80 steel sheets. The contact angle of the steel sheets increased from 41.9° to 83.3° before and after hot rolling, indicating a significant enhancement in hydrophobicity. This enhancement is primarily attributed to the formation of an extreme-pressure lubricating film through chemical reactions of OAG on the metal surface. Consequently, this film markedly reduces the friction between the drilling tools and the wellbore rocks, thereby enhancing lubrication performance and providing valuable guidance for constructing high-density water-based drilling fluid gel systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3