Radially and Axially Oriented Ammonium Alginate Aerogels Modified with Clay/Tannic Acid and Crosslinked with Glutaraldehyde

Author:

De la Cruz Lucía G.1ORCID,Abt Tobias1ORCID,León Noel1ORCID,Sánchez-Soto Miguel1ORCID

Affiliation:

1. Centre Català del Plàstic, Universitat Politècnica de Catalunya, Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain

Abstract

Lightweight materials that combine high mechanical strength, insulation, and fire resistance are of great interest to many industries. This work explores the properties of environmentally friendly alginate aerogel composites as potential sustainable alternatives to petroleum-based materials. This study analyzes the effects of two additives (tannic acid and montmorillonite clay), the orientation that results during casting, and the crosslinking of the biopolymer with glutaraldehyde on the properties of the aerogel composites. The prepared aerogels exhibited high porosities between 90% and 97% and densities in the range of 0.059–0.191 g/cm3. Crosslinking increased the density and resulted in excellent performance under loading conditions. In combination with axial orientation, Young’s modulus and yield strength reached values as high as 305 MPa·cm3/g and 7 MPa·cm3/g, respectively. Moreover, the alginate-based aerogels exhibited very low thermal conductivities, ranging from 0.038 W/m·K to 0.053 W/m·K. Compared to pristine alginate, the aerogel composites’ thermal degradation rate decreased substantially, enhancing thermal stability. Although glutaraldehyde promoted combustion, the non-crosslinked aerogel composites demonstrated high fire resistance. No flame was observed in these samples under cone calorimeter radiation, and a minuscule peak of heat release of 21 kW/m2 was emitted as a result of their highly efficient graphitization and fire suppression. The combination of properties of these bio-based aerogels demonstrates their potential as substituents for their fossil-based counterparts.

Funder

Ministerio de Ciencia e Innovación

Generalitat de Catalunya

Consejo Nacional de Humanidades, Ciencias y Tecnologías

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3