Crucial Development: Criticality Is Important to Cell-to-Cell Communication and Information Transfer in Living Systems

Author:

Hunt von Herbing IoneORCID,Tonello LucioORCID,Benfatto MaurizioORCID,Pease April,Grigolini PaoloORCID

Abstract

In the fourth paper of this Special Issue, we bridge the theoretical debate on the role of memory and criticality discussed in the three earlier manuscripts, with a review of key concepts in biology and focus on cell-to-cell communication in organismal development. While all living organisms are dynamic complex networks of organization and disorder, most studies in biology have used energy and biochemical exchange to explain cell differentiation without considering the importance of information (entropy) transfer. While all complex networks are mixtures of patterns of complexity (non-crucial and crucial events), it is the crucial events that determine the efficiency of information transfer, especially during key transitions, such as in embryogenesis. With increasing multicellularity, emergent relationships from cell-to-cell communication create reaction–diffusion exchanges of different concentrations of biochemicals or morphogenetic gradients resulting in differential gene expression. We suggest that in conjunction with morphogenetic gradients, there exist gradients of information transfer creating cybernetic loops of stability and disorder, setting the stage for adaptive capability. We specifically reference results from the second paper in this Special Issue, which correlated biophotons with lentil seed germination to show that phase transitions accompany changes in complexity patterns during development. Criticality, therefore, appears to be an important factor in the transmission, transfer and coding of information for complex adaptive system development.

Funder

UNT-COS

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biophotons: A Hard Problem;Applied Sciences;2024-06-25

2. Biophotons: New Experimental Data and Analysis;Entropy;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3