Development of Language Models for Continuous Uzbek Speech Recognition System

Author:

Mukhamadiyev Abdinabi1ORCID,Mukhiddinov Mukhriddin1ORCID,Khujayarov Ilyos2,Ochilov Mannon3,Cho Jinsoo1

Affiliation:

1. Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Republic of Korea

2. Department of Information Technologies, Samarkand Branch of Tashkent University of Information Technologies Named after Muhammad al-Khwarizmi, Tashkent 140100, Uzbekistan

3. Department of Artificial Intelligence, Tashkent University of Information Technologies Named after Muhammad al-Khwarizmi, Tashkent 100200, Uzbekistan

Abstract

Automatic speech recognition systems with a large vocabulary and other natural language processing applications cannot operate without a language model. Most studies on pre-trained language models have focused on more popular languages such as English, Chinese, and various European languages, but there is no publicly available Uzbek speech dataset. Therefore, language models of low-resource languages need to be studied and created. The objective of this study is to address this limitation by developing a low-resource language model for the Uzbek language and understanding linguistic occurrences. We proposed the Uzbek language model named UzLM by examining the performance of statistical and neural-network-based language models that account for the unique features of the Uzbek language. Our Uzbek-specific linguistic representation allows us to construct more robust UzLM, utilizing 80 million words from various sources while using the same or fewer training words, as applied in previous studies. Roughly sixty-eight thousand different words and 15 million sentences were collected for the creation of this corpus. The experimental results of our tests on the continuous recognition of Uzbek speech show that, compared with manual encoding, the use of neural-network-based language models reduced the character error rate to 5.26%.

Funder

Gachon University research fund of 2021

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3