Phase–Amplitude Coupling between Theta Rhythm and High-Frequency Oscillations in the Hippocampus of Pigeons during Navigation

Author:

Yang Long12,Chen Xi12,Yang Lifang12ORCID,Li Mengmeng12,Shang Zhigang123

Affiliation:

1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China

3. Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China

Abstract

Navigation is a complex task in which the hippocampus (Hp), which plays an important role, may be involved in interactions between different frequency bands. However, little is known whether this cross-frequency interaction exists in the Hp of birds during navigation. Therefore, we examined the electrophysiological characteristics of hippocampal cross-frequency interactions of domestic pigeons (Columba livia domestica) during navigation. Two goal-directed navigation tasks with different locomotor modes were designed, and the local field potentials (LFPs) were recorded for analysis. We found that the amplitudes of high-frequency oscillations in Hp were dynamically modulated by the phase of co-occurring theta-band oscillations both during ground-based maze and outdoor flight navigation. The high-frequency amplitude sub-frequency bands modulated by the hippocampal theta phase were different at different tasks, and this process was independent of the navigation path and goal. These results suggest that phase–amplitude coupling (PAC) in the avian Hp may be more associated with the ongoing cognitive demands of navigational processes. Our findings contribute to the understanding of potential mechanisms of hippocampal PAC on multi-frequency informational interactions in avian navigation and provide valuable insights into cross-species evolution.

Funder

National Natural Science Foundation of China

National Postdoctoral Researcher Program

STI 2030-Major Project

Key Scientific and Technological Projects of Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3