Improved Equine Fecal Microbiome Characterization Using Target Enrichment by Hybridization Capture

Author:

Álvarez Narváez Sonsiray1ORCID,Beaudry Megan S.2,Norris Connor G.1,Bartlett Paula B.1,Glenn Travis C.2ORCID,Sanchez Susan1ORCID

Affiliation:

1. Department of Infectious Disease, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA

2. Department of Environmental Health Science, College of Public Health, The University of Georgia, Athens, GA 30602, USA

Abstract

GITDs are among the most common causes of death in adult and young horses in the United States (US). Previous studies have indicated a connection between GITDs and the equine gut microbiome. However, the low taxonomic resolution of the current microbiome sequencing methods has hampered the identification of specific bacterial changes associated with GITDs in horses. Here, we have compared TEHC, a new approach for 16S rRNA gene selection and sequencing, with conventional 16S rRNA gene amplicon sequencing for the characterization of the equine fecal microbiome. Both sequencing approaches were used to determine the fecal microbiome of four adult horses and one commercial mock microbiome. Our results show that TEHC yielded significantly more operational taxonomic units (OTUs) than conventional 16S amplicon sequencing when the same number of reads were used in the analysis. This translated into a deeper and more accurate characterization of the fecal microbiome when the samples were sequenced with TEHC according to the relative abundance analysis. Alpha and beta diversity metrics corroborated these findings and demonstrated that the microbiome of the fecal samples was significantly richer when sequenced with TEHC compared to 16S amplicon sequencing. Altogether, our study suggests that the TEHC strategy provides a more extensive characterization of the fecal microbiome of horses than the current alternative based on the PCR amplification of a portion of the 16S rRNA gene.

Funder

USDA Animal Health Capacity Grant

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3