Three-Way k-Means Model: Dynamic Optimal Sensor Placement for Efficient Environment Monitoring in Pig House

Author:

Li Haopu1ORCID,Li Bugao2ORCID,Li Haoming3,Song Yanbo4,Liu Zhenyu1

Affiliation:

1. College of Agricultural Engineering, Shanxi Agriculture University, Jinzhong 030801, China

2. College of Animal Science, Shanxi Agriculture University, Jinzhong 030801, China

3. College of Information Science and Engineering, Shanxi Agriculture University, Jinzhong 030801, China

4. College of Life Sciences, Shanxi Agriculture University, Jinzhong 030801, China

Abstract

Sensors were of paramount importance in the context of poultry and livestock farming, serving as essential tools for monitoring a variety of production management parameters. The effective surveillance and optimal control of the swine facility environment critically depend on the implementation of a robust strategy for situating the optimal number of sensors in precisely the right locations. This study presents a dynamic sensor placement approach for pigsties using the three-way k-means algorithm. The method involves determining candidate sensor combinations through the application of the k-means algorithm and a re-clustering strategy. The optimal sensor locations were then identified using the Joint Entropy-Based Method (JEBM). This approach adjusts sensor positions based on different seasons (summer and winter) to effectively monitor the overall environment of the pigsty. We employ two clustering models, one based on particle swarm optimization and the other on genetic algorithms, along with a re-clustering strategy to identify candidate sensor combinations. The joint entropy-based method (JEBM) helps select the optimal sensor placement. Fused data from the optimal sensor layout undergo a fuzzy fusion process, reducing errors compared to direct averaging. The results show varying sensor needs across seasons, and dynamic placement enhances pigsty environment monitoring. Our approach reduced the number of sensors from 30 to 5 (in summer) and 6 (in winter). The optimal sensor positions for both seasons were integrated. Comparing the selected sensor layout to the average of all sensor readings representing the overall pigsty environment, the RMSE were 0.227–0.294 and the MAPE were 0.172–0.228, respectively, demonstrating the effectiveness of the sensor layout.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3