Single-Cell RNA Sequencing Reveals Differences in Chromatin Remodeling and Energy Metabolism among In Vivo-Developed, In Vitro-Fertilized, and Parthenogenetically Activated Embryos from the Oocyte to 8-Cell Stages in Pigs

Author:

Fan Jianlin12,Liu Chang12,Zhao Yunjing1,Xu Qianqian12,Yin Zhi12,Liu Zhonghua12ORCID,Mu Yanshuang12

Affiliation:

1. Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China

2. College of Life Science, Northeast Agricultural University, Harbin 150030, China

Abstract

In vitro-fertilized (IVF) and parthenogenetically activated (PA) embryos, key to genetic engineering, face more developmental challenges than in vivo-developed embryos (IVV). We analyzed single-cell RNA-seq data from the oocyte to eight-cell stages in IVV, IVF, and PA porcine embryos, focusing on developmental differences during early zygotic genome activation (ZGA), a vital stage for embryonic development. (1) Our findings reveal that in vitro embryos (IVF and PA) exhibit more similar developmental trajectories compared to IVV embryos, with PA embryos showing the least gene diversity at each stage. (2) Significant differences in maternal mRNA, particularly affecting mRNA splicing, energy metabolism, and chromatin remodeling, were observed. Key genes like SMARCB1 (in vivo) and SIRT1 (in vitro) played major roles, with HDAC1 (in vivo) and EZH2 (in vitro) likely central in their complexes. (3) Across different types of embryos, there was minimal overlap in gene upregulation during ZGA, with IVV embryos demonstrating more pronounced upregulation. During minor ZGA, global epigenetic modification patterns diverged and expanded further. Specifically, in IVV, genes, especially those linked to H4 acetylation and H2 ubiquitination, were more actively regulated compared to PA embryos, which showed an increase in H3 methylation. Additionally, both types displayed a distinction in DNA methylation. During major ZGA, IVV distinctively upregulated genes related to mitochondrial regulation, ATP synthesis, and oxidative phosphorylation. (4) Furthermore, disparities in mRNA degradation-related genes between in vivo and in vitro embryos were more pronounced during major ZGA. In IVV, there was significant maternal mRNA degradation. Maternal genes regulating phosphatase activity and cell junctions, highly expressed in both in vivo and in vitro embryos, were degraded in IVV in a timely manner but not in in vitro embryos. (5) Our analysis also highlighted a higher expression of many mitochondrially encoded genes in in vitro embryos, yet their nucleosome occupancy and the ATP8 expression were notably higher in IVV.

Funder

Natural Science Foundation of Heilongjiang Province of China

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3