Affiliation:
1. Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
2. Hill’s Pet Nutrition Inc., Overland Park, KS 66211, USA
Abstract
This study used thirty-two dogs, which were assigned to a preferred period of 14 days and then assigned to one of the four treatment foods: control (containing no added betaine, no added L-carnitine), control with 0.5% added betaine (Treatment 2), control with no added betaine and 300 ppm added L-carnitine (Treatment 3), or control with 0.5% added betaine and 300 ppm added L-carnitine (Treatment 4). All treatment foods were fed for ninety days. Untargeted blood metabolomic analysis and immune response were measured at the beginning and end of the 90-day feeding trial. Feeding betaine increased single-carbon metabolites while decreasing many carnitine-containing metabolites. Feeding L-carnitine increased many carnitine metabolites, while the combination synergistically influenced the metabolome. The combination of betaine and L-carnitine increased the cytokines released in a Tru-culture system in response to stimulation while numerically decreasing their release when unstimulated. Therefore, the combination of dietary betaine and L-carnitine could have the dual positive effects of reducing cytokine stimulation, controlling inflammation during health, and providing a robust response to bacterial infection.
Funder
Hill’s Pet Nutrition, Inc.