Affiliation:
1. Lab-STICC, CNRS UMR 6285, ENSTA Bretagne, 2 Rue François Verny, CEDEX 09, 29806 Brest, France
Abstract
This study introduces a novel approach to bolstering quantum key distribution (QKD) security by implementing swift classical channel authentication within the SARG04 and BB84 protocols. We propose mono-authentication, a pioneering paradigm employing quantum-resistant signature algorithms—specifically, CRYSTALS-DILITHIUM and RAINBOW—to authenticate solely at the conclusion of communication. Our numerical analysis comprehensively examines the performance of these algorithms across various block sizes (128, 192, and 256 bits) in both block-based and continuous photon transmission scenarios. Through 100 iterations of simulations, we meticulously assess the impact of noise levels on authentication efficacy. Our results notably highlight CRYSTALS-DILITHIUM’s consistent outperformance of RAINBOW, with signature overheads of approximately 0.5% for the QKD-BB84 protocol and 0.4% for the QKD-SARG04 one, when the quantum bit error rate (QBER) is augmented up to 8%. Moreover, our study unveils a correlation between higher security levels and increased authentication times, with CRYSTALS-DILITHIUM maintaining superior efficiency across all key rates up to 10,000 kb/s. These findings underscore the substantial cost and complexity reduction achieved by mono-authentication, particularly in noisy environments, paving the way for more resilient and efficient quantum communication systems.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献