Edge Computing Based IoT Architecture for Low Cost Air Pollution Monitoring Systems: A Comprehensive System Analysis, Design Considerations & Development

Author:

Idrees Zeba,Zou ZhuoORCID,Zheng Lirong

Abstract

With the swift growth in commerce and transportation in the modern civilization, much attention has been paid to air quality monitoring, however existing monitoring systems are unable to provide sufficient spatial and temporal resolutions of the data with cost efficient and real time solutions. In this paper we have investigated the issues, infrastructure, computational complexity, and procedures of designing and implementing real-time air quality monitoring systems. To daze the defects of the existing monitoring systems and to decrease the overall cost, this paper devised a novel approach to implement the air quality monitoring system, employing the edge-computing based Internet-of-Things (IoT). In the proposed method, sensors gather the air quality data in real time and transmit it to the edge computing device that performs necessary processing and analysis. The complete infrastructure & prototype for evaluation is developed over the Arduino board and IBM Watson IoT platform. Our model is structured in such a way that it reduces the computational burden over sensing nodes (reduced to 70%) that is battery powered and balanced it with edge computing device that has its local data base and can be powered up directly as it is deployed indoor. Algorithms were employed to avoid temporary errors in low cost sensor, and to manage cross sensitivity problems. Automatic calibration is set up to ensure the accuracy of the sensors reporting, hence achieving data accuracy around 75–80% under different circumstances. In addition, a data transmission strategy is applied to minimize the redundant network traffic and power consumption. Our model acquires a power consumption reduction up to 23% with a significant low cost. Experimental evaluations were performed under different scenarios to validate the system’s effectiveness.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3