Gini and Entropy-Based Spread Indexes for Primary Energy Consumption Efficiency and CO2 Emission

Author:

Takada Hellinton H.ORCID,Ribeiro Celma O.ORCID,Costa Oswaldo L. V.,Stern Julio M.ORCID

Abstract

Primary energy consumption is one of the key drivers of global CO2 emissions that, in turn, heavily depends on the efficiency of involved technologies. Either improvement in technology efficiency or the expansion of non-fossil fuel consumption requires large investments. The planning and financing of such investments by global policy makers or global energy firms require, in turn, reliable measures of associated global spread and their evolution in time, at least from the point of view of the principles for responsible investment (PRI). In this paper, our main contribution is the introduction of index measures for accessing global spread (that is, measures of inequality or inhomogeneity in the statistical distribution of a related quantity of interest) of technology efficiency and CO2 emission in primary energy consumption. These indexes are based on the Gini index, as used in economical sciences, and generalized entropy measures. Regarding primary energy sources, we consider petroleum, coal, natural gas, and non-fossil fuels. Between our findings, we attest some stable relations in the evolution of global spreads of technology efficiency and CO2 emission and a positive relation between changes in global spread of technology efficiency and use of non-fossil fuel.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. BP Statistical Review of World Energy,2019

2. World Energy Outlook 2018,2018

3. Applying Portfolio Theory to EU Electricity Planning and Policy-Making;Awerbuch,2003

4. Portfolio-Based Electricity Generation Planning: Policy Implications For Renewables And Energy Security

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3